Documentation

Documentation

  • Conversation
  • Reader
  • Speech
  • Console
  • AI Agents
  • Languages iconEnglish
    • Tiếng Việt
    • Janpanese

›Natural Language Processing

Documentation

  • Overview
  • I. Chatbot Introduction

    • What is Chatbot
    • Chatbot's purposes
    • Popular types of Chatbot
    • Benefits of using FPT.AI Chatbot
    • Starting with FPT.AI

    II. Building Chatbot on FPT.AI Platform

    • Working Mechanism
    • Bot building process
    • Creating your Chatbot
    • Natural Language Processing - NLP
    • Answer scenarios
    • New Bot scenarios - Bot Builder
    • Answer cards
    • Step connecting buttons
    • Getting customer's information using Form cards
    • Variable settings and management
    • Variable condition review
    • Memories
    • Send/get information via JSON API card
    • Reminder
    • Advanced functions
    • Persistent menu

    III. History

    • History - Updating Bot knowledge

    IV. Multi-channel Integration

    • Integrate with Facebook
    • Integrate with Facebook at Work
    • Integrate with Viber
    • Integrate with Zalo
    • Integrate with website
    • Webhook

    V. Broadcast

    • Broadcast

    VI. Auto Comment

    • Auto comment on Facebook

    VII. Automation Test

    • Check base on testcases
    • Auto create testcases

    VIII. Analytics

    • Introduction
    • Number of user's requests
    • Top matched intents
    • Chat with Bot
    • Number of new users
    • Top scenarios
    • Number of messages bot answered
    • Number of user's requests per hour
    • Number of active users per hour
    • Real-time analytics
    • Broadcast report

    X. Rating and Survey

    • Rating
    • Survey

    XI. Bot Setting - Management

    • Introduction
    • Bot information
    • Messages management
    • Data management
    • Bot intent confidence
    • Delete Bot data
    • Delete bot
    • Transfer bot ownership
    • Version

    XII. Bot Roles

    • Bot roles

    XIII. Chatbot SDK

    • Chat Bot SDK
  • Appendices

Live Support

  • Introduction
  • Customer list interface
  • Customer support flow
  • Note feature
  • Suppoter chat
  • KPI report feature
  • Ticket config
  • Ticket report
  • Archive conversation
  • Ticket management
  • Auto assign to supporters

Tutorials (Videos)

  • 1. Brief overview of FPT.AI
  • 2. Using QnA feature to create a Chatbot
  • 3. Creating Chatbot with complicated scenarios
  • 4. Precondition fucntion in Scenarios
  • 5. Random answer function in Scenarios
  • 6. NLP feature
  • 7. Exact match and Predictive Match in NLP
  • 8. History of Recognition
  • 9. Broadcast feature
  • 10. Live Support feature
  • 11. Persistent Menu
  • 12. Auto-comment feature on Facebook
  • 13. Bot roles
  • 14. Bot configuration in Settings section
  • 15. Integration Chatbot with Facebook
  • 16. Integration Chatbot with Facebook at Work

API Reference

  • Introduction
  • General
  • Natural Language Processing

    • Intent
    • Entity
    • Sample
    • Train
    • Predict
    • Keyword
    • Dictionary

    Dialogue Management

    • Get Answer
    • JSON Card
    • Types of the message

API Reference

Predict

All

Requests FPT.AI to predict for both intents of and entities in the given text.

Example request

curl -X POST \
  https://v3-api.fpt.ai/api/v3/predict \
  -H 'Authorization: Bearer your_application_token' \
  -d '{
  "content": "Shop bán iPhone không?",
  "save_history": false
}'

Example response

{
    "status": {
        "code": 200,
        "message": "Predict All successful",
        "module": "",
        "api_code": 0,
        "err_code": 0
    },
    "data": {
        "intents": [
            {
                "label": "ask_product",
                "confidence": 0.92
            },
            {
                "label": "ask_general_information",
                "confidence": 0.04
            },
            {
                "label": "ask_inventory",
                "confidence": 0.03
            }
        ],
        "entities": [
            {
                "start": 9,
                "end": 15,
                "value": "iPhone",
                "real_value": "apple-iphone",
                "entity": "filter_brand",
                "subentities": null
            }
        ]
    },
    "history_id": 0
}

Request

POST https://v3-api.fpt.ai/api/v3/predict

Parameters

ParameterRequiredDescription
contentyestext to predict
save_historynosave to history

Response

Returns a JSON object that contains predicted intents and entities with confidence values.

Intent

Requests FPT.AI to predict for intents of the given text.

Example request

curl -X POST \
  https://v3-api.fpt.ai/api/v3/predict/intent \
  -H 'Authorization: Bearer your_application_token' \
  -d '{
  "content": "do you have fresh chicken eggs?"
}'

Example response

{
    "status": {
        "code": 200,
        "message": "Predict Intents successful",
        "module": "",
        "api_code": 0,
        "err_code": 0
    },
    "data": {
        "intents": [
            {
                "label": "product_info",
                "confidence": 0.99
            },
            {
                "label": "purchase",
                "confidence": 0.005
            }
        ]
    }
}

Request

POST https://v3-api.fpt.ai/api/v3/predict/intent

Paramenters

ParameterRequiredDescription
contentyestext to predict
save_historynosave to history

Response

Returns a JSON object that contains predicted intents with confidence values.

Entity

Requests FPT.AI to predict for entities in the given text.

Example request

curl -X POST \
  https://v3-api.fpt.ai/api/v3/predict/entity \
  -H 'Authorization: Bearer your_application_token' \
  -d '{
  "content": "I'd like to purchase some fresh vegetable",
  "save_history": false
}'

Example response

{
    "status": {
        "code": 200,
        "message": "Recognize Entities successful",
        "module": "",
        "api_code": 0,
        "err_code": 0
    },
    "data": {
        "entities": [
            {
                "start": 32,
                "end": 41,
                "value": "vegetable",
                "real_value": "vegetable",
                "entity": "product_name",
                "subentities": []
            }
        ]
    }
}

Request

POST https://v3-api.fpt.ai/api/v3/predict/entity

Paramenters

ParameterRequiredDescription
contentyestext to predict

Response

Returns a JSON object that contains predicted entities with confidence values.

← TrainKeyword →
  • All
    • Request
    • Parameters
    • Response
  • Intent
    • Request
    • Response
  • Entity
    • Request
    • Paramenters
    • Response
Conversation
DocumentationAPI ReferenceTutorials (Video)
Reader
DocumentationAPI ReferenceTutorials
Speech
DocumentationAPI ReferenceTutorials
Copyright © 2025 FPT Corporation